
Non-equilibrium transport of charge carriers in disordered organic materials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 136210

(http://iopscience.iop.org/0953-8984/19/13/136210)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 16:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 136210 (15pp) doi:10.1088/0953-8984/19/13/136210

Non-equilibrium transport of charge carriers in
disordered organic materials

V R Nikitenko1,3, H von Seggern1 and H Bässler2
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Abstract
An analytic theory of non-equilibrium hopping charge transport in disordered
organic materials is developed. It rests on the concept of effective transport
energy and includes quasi-equilibrium (normal) and extremely non-equilibrium
(dispersive) regimes of hopping transport as limiting cases at long and short
times, respectively. Special attention is paid to the regime of moderately weak
non-equilibrium transport. In this regime the quasi-equilibrium value of the
mobility is nearly established, whereas the coefficient of field-assisted diffusion
continues to increase at long times. Analytic expressions for relaxation times
in the context of field-assisted diffusion and carrier drift have been obtained.
The results of the theory are in agreement both with the data of time-of-
flight experiments for molecularly doped polymers and the results of numerical
simulations of the Gaussian disorder model. The impact of non-equilibrium
effects on the transit time of charge carriers in thin organic films with a thickness
of the order of 100 nm, which is typical for organic light-emitting diodes, is
outlined.

1. Introduction

Charge transport in disordered organics has been intensively investigated in the last 30 years,
both experimentally and theoretically. The Gaussian disorder model (GDM) [1] plays a
dominant role in the understanding of the physical background of transport. The concept
of the GDM is the temperature- and field-assisted tunnelling (hopping) of charge carriers
between localized states (LSs). LSs are randomly distributed in their energies and mutual
distances under the dominant role of energetic disorder. The latter is described by a Gaussian
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distribution function of energies of LSs. The transition rates of charge carriers have been
assumed to follow the Miller and Abraham model [2]. The ubiquitous experimental option
for investigating charge transport is the time-of-flight (TOF) experiment, the observable being
the transient current in the organic layer. In general, the GDM model explains phenomena such
as the field and temperature dependences of charge carrier mobility, the transition from the
regime of normal (quasi-equilibrium) to dispersive transport with decreasing temperature, and
the anomalously large field-dependent dispersion of the transient current signal under quasi-
equilibrium conditions. The essential role of energy correlations of neighbour LSs in the Poole–
Frenkel-type field dependence of mobility in low electric fields was the subject of subsequent
theoretical works [3].

The main computational method in the GDM as well as in recent works [3] is the
Monte Carlo numerical simulation. However, simulating the effect of positional disorder
is a notoriously difficult and time-consuming task, especially at low field strengths and
temperatures [1]. This problem can be overcome by analytic theories. Examples of such
theories are the models of hopping transport that are based on the concept of effective transport
energy [4–8]. These were applied successfully in recent years in order to calculate quasi-
equilibrium carrier mobility [6] and injection currents [7]. The effective transport energy is
analogous to the mobility edge in the multiple-trapping (MT) model [6], where deeper LSs
can be considered as traps. This concept allows one to adapt the earlier results of the MT
model [9–11] for the hopping. This hopping theory, however, has not been developed for the
general case of non-equilibrium hopping transport. So far, only the asymptotic regimes of
quasi-equilibrium [6, 12] and extremely non-equilibrium (dispersive) [13] hopping have been
considered analytically.

The topic of recent works was the quasi-equilibrium transport in general, especially the
charge carrier mobility [6, 8, 14–17]. However, it is an inherent feature of transport in
disordered materials that shortly after their generation excess carriers are not yet in quasi-
equilibrium, notably if there is an excess energy during excitation [1]. This circumstance,
together with a strong variance of transition rate of carriers between LSs, causes a decrease of
the average mobility with time, while the spatial dispersion of carriers relative to their mean
position is anomalously large and time independent. This case is referred to as dispersive
transport [1, 13, 18], whereas at long times, quasi-equilibrium transport is established,
characterized by time-independent mobility and diffusion coefficients, implying that relative
dispersion decreases with time. The later transport mode, referred to as quasi-equilibrium or
Gaussian transport, is often realized in materials with moderate energetic disorder. Indeed,
the TOF transients of �1 μm thick samples at room temperature bear out a well developed
plateau. This circumstance, however, does not always imply that the transport is completely
normal, i.e. Gaussian. An unambiguous signature of the deviation from quasi-equilibrium is
the anomalously large dispersion of formally non-dispersive TOF signals and the concomitant
scaling of the tails of TOF signals as a function of sample thickness and electric field strength.
This scaling was qualitatively explained in the works of Bässler et al [19–21] in terms of the
increase of field-assisted diffusivity in the long-time domain after the relaxation of the carrier
mobility.

In the present work, an analytic theory for non-equilibrium hopping charge transport in
disordered organics is being developed with special emphasis on transport in thin samples,
e.g. such as those used in light-emitting diodes. It includes previously investigated quasi-
equilibrium (normal) [6] and extremely non-equilibrium (dispersive) [13] regimes at long and
short times, respectively. The equations introduced in section 2.1 allow adapting analytic
results, which has been obtained earlier in the MT model [9–11], to the case of hopping
transport. In section 2.2, analytic estimations of relaxation times of carrier mobility, teq μ,
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and field-induced diffusivity, teq D , teq μ � teq D , are obtained, where teq D is the time of
ultimate establishment of quasi-equilibrium. In section 2.3 the time dependence of the TOF
current is analysed and a simple approximate analytic expression is obtained. The results are in
good agreement with both TOF experiments for molecularly doped polymers and Monte Carlo
simulations of the GDM [1, 19–22], as shown in section 3.

2. Theory

2.1. Equation of non-equilibrium hopping transport

An inherent feature of disordered materials is a broad distribution of LSs in energy and mutual
distances. The energy distribution of LSs is described in terms of the distribution function
g(E),

∫ ∞
−∞ dE g(E) = 1. The appropriate choice for organic materials is the Gaussian energy

distribution of LSs,

g(E) = exp(−E2/2σ 2)/
√

2πσ 2. (1)

Analyses of transport in disordered materials can be greatly simplified by the concept of
transport energy [4–8]. It rests on the notion that (i) for the typical case σ/kT � 1 charge
transport is controlled by thermally activated jumps from LSs in a deep tail of g(E), and (ii)
for these jumps the energy of the target state Etrans does not depend on the energy of the initial
state E , if E � Etrans, since g(E) decreases drastically to lower energies. The states around
Etrans (the latter is usually called ‘transport energy’) contribute mostly to the transport process,
while the great majority of charge carriers are localized at deeper states, E � Etrans. The deep
states, E < Etrans, can be considered as traps, while Etrans and LSs with E > Etrans are mobility
edge and ‘conductive states’, respectively. The method of calculating Etrans is introduced here.

The transition rate of charge carrier from the LS of energy E to the LS of energy E ′,
which are separated by the distance r , is described in this work in terms of the Miller–
Abraham expression, i.e. ν(r, E, E ′) = ν0 exp[−u(r, E, E ′)], where u(r, E, E ′) = η(E ′ −
E)(E ′ − E)/kT + 2γ r is the hopping parameter, η(x) is the unit step function, ν0 is the
frequency prefactor, γ is the inverse localization length, k is the Boltzmann constant and T
is the temperature. The steep dependence of the transition rate on u together with positional
disorder implies that a carrier jumps to that neighbour LS that is characterized by a minimal
value of the hopping parameter u = u0. The jump, followed by a return to the initial LS, does
not contribute to transport, however. Consequently, the parameters of numerous neighbours of
the initial LS must be included in order to determine the value of u0. A rigorous formalism is
provided by the percolation theory [23, 24]. This approach encounters problems, however, if a
non-uniform and non-stationary distribution of charge carriers is considered. On the other hand,
if transport is dominated by energetic rather than by positional (off-diagonal) disorder, i.e. if
the energy distribution of LSs is rather broad, one can assume that the typical release frequency
of a carrier from an LS with energy E , ω(E) = ν0 exp[−u0(E)], depends only on the energy
of this LS, E . This assumption will be justified by comparing of theoretical results with data
of experiments, Monte Carlo simulations in the GDM and results of percolation theory (see
below). Following [5, 6], one can define the typical release frequency ω(E) by the condition

n{E, ln[ν0/ω(E)]} = 1, (2)

where n(E, u0) is the mean number of neighbours for the LS of energy E having hopping
parameters u � u0. An approximate approach to calculate ω(E) will be introduced below.

The number n(E, u0) is a sum of two terms, n(E, u0) = n↓(E, u0)+ n↑(E, u0), the latter
and former accounting for upwards and downwards jumps, respectively. For the limit of deep
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Figure 1. Temperature dependences of the transport energy Etrans for different values of σ , as
shown in the figure. The solid lines are calculated from equations (A.1), (4) and (5). The dashed
line is calculated under the assumption that return jumps are absent, in order to compare this result
with the data from [8] (σ = 0.1 eV); see circles. N = 1021 cm−3, γ −1 = 0.2 nm.

LSs, E → −∞, one can replace n(E, u0) by n↑(E, u0) in (2). The calculation of n↑(E, u0) is
described in appendix A. The result is [6] u0 ≈ (Etr − E)/kT , and hence

ω(E) ≈ ν0 exp[−(Etr − E)/kT ], E < Etrans, (3)

where the formal transport energy Etr was defined as [6]

lim
E→−∞

{n↑[E, (Etr − E)/kT ]} = 1. (4)

Obviously, for n↑[E, u0(E)] > 1/2, jumps are preferably upwards in energy and, hence, the
upper limit of traps, i.e. the transport energy, can be defined by the condition

n↑{Etrans, (Etr − Etrans)/kT } = 1/2. (5)

One should remember that the formal transport energy Etr as defined in [6] cannot be considered
as the upper energetic limit of sites that can act as traps because the respective hopping
parameter u0 = (Etr − E)/kT does not contain the tunnelling term ∼=2γ a included in the
Miller–Abrahams model. Considering u0 as u0 = (Etrans − E)/kT + 2γ a, one obtains
following equation for the typical hopping distance a:

a = (Etr − Etrans)/2γ kT . (6)

Since jumps from the LSs with energies E � Etrans occur preferably downwards in energy,
ω(E) ≈ ν0 exp(−2γ a) ≡ τ−1

0 . In other words, τ0 is the lifetime of carriers in ‘conductive’ LSs
with energies above Etrans. It should be noted that the condition 2γ N−1/3kT/σ > 1, where
N is the spatial density of LSs, is usually fulfilled in organic materials even at moderately
low temperatures. For 2γ N−1/3kT/σ � 1, equations (4) and (5) yield Etrans ≈ 0. This
is plausible because the jump rate to the neighbour LS is defined by the spatial distance
rather then by the energy difference. For the same case, Etr is well above the centre of
g(E), Etr ≈ 1.2kT (6γ 3/π N)1/3 � σ [6]. For this limit, (6) yields a ≈ Etr/2γ kT ≈
1.2(3/4π N)1/3 ≈ 0.745N−1/3.

Figure 1 shows the temperature dependences of the transport energy Etrans calculated
from (1), (4) and (5) for different values of the energy variance σ . Obviously, |Etrans| < σ
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for the case σ < 0.1 eV, T > 200 K, and |Etrans| → 0 in the high-temperature limit. Note that
in [8] the transport energy was defined differently, i.e. as the maximum of the energy-dependent
‘differential conductivity’, that describes the contribution of states with given energy E to
the total conductivity. The dashed line shows Etrans(T ), calculated under the assumption that
returns to the initial states are absent (see appendix A), as in [8]. The circles show the transport
energy at several temperatures as it have been calculated in [8]; see figure 2 of that paper. These
values differ by less than kT , if T > 200 K. This supports the notion that the definition of Etrans

by (5) is in good agreement with the statement that LSs with energies around Etrans contribute
mostly to the transport and hence Etrans is in analogy with ‘mobility edge’ of the MT model.
Thus, both release and capture of charge carriers for LSs with energies E < Etrans, which are
characterized by the typical frequency ω(E), see (3), and by energy-independent capture time
τ0 = ν−1

0 exp(2γ a), respectively, can be described in complete analogy with the MT model,
Etrans being the mobility edge.

One has to remember that, in a real TOF experiment, charge carriers are not generated
under quasi-equilibrium, but, rather, are generated in the upper portion of the density of states.
That implies energetic relaxation (thermalization) of charge carriers. It occurs simultaneously
with transport, and should be considered as a two-step process [4, 5, 13]. The first step is
a sequence of fast jumps downwards in energy right after a carrier was started at t = 0.
However, the characteristic time of this process cannot considerably exceed the time τ0 under
the presumed condition 2γ N−1/3kT/σ > 1. Upwards jumps to the transport energy, which are
described above, are the rate-limiting step for transport at t � τ0; hence under this condition
the concept of transport energy is valid. The moment t = τ0 often will be referred to as t = 0
below, because τ0 is much shorter than all other characteristic times mentioned below.

One has to recall also the approximation made when distinguishing between deep and
shallow traps, that greatly simplify the analytic modelling of energetic relaxation of charge
carriers in course of non-equilibrium transport [9–11]. In this approximation all the traps
(i.e. LSs with energies E < Etrans) are considered as being either currently deep or either
currently shallow, defined by the condition that release of a previously captured carrier
from a currently deep trap is not probable up to time t , and vice versa. In the simplest
approximation [9, 10], all traps are deep, if E < Ed(t), and vice versa. The demarcation
energy Ed(t) is defined from the condition ω[Ed(t)]t = 1 and equation (3) as

Ed(t) = Etr − kT ln(ν0t) = Etrans − kT ln(t/τ0), t > τ0. (7)

Obviously, Ed(t) < Etrans at t > τ0.
On the basis of the formal analogy between MT and hopping at t � τ0, as discussed

above, one can describe the time- and coordinate-dependent density of charge carriers p(x, t)
by the following differential equation, which was derived previously in the framework of the
MT model [9, 11],

∂p(x, t)

∂ t
+ μ(t)F0

∂p(x, t)

∂x
− DF(t)

∂2 p(x, t)

∂x2
= −λ(t)[p(x, t) − p(x, 0)], (8)

where F0 is the strength of the applied electric field, and μ(t), DF(t) and λ(t) are the time-
dependent mobility, coefficient of field-assisted diffusion and trapping frequency, respectively.
These values are defined as

μ(t) = μ0θ1(t), (9a)

DF(t) = τ−1
0 (μ0 F0τ0)

2θ3
1 (t)/θ2(t), (9b)

λ(t) = θ1(t)/τ (t), (9c)
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where

1/θm(t) =
∫ Etrans

Ed(t)
dE g(E)[τ0ω(E)]−m, m = 1, 2, (10)

1/τ(t) =
∫ Ed(t)

−∞
dE g(E)/τ0, (11)

ω(E) and Ed(t) are defined by (3) and (7), respectively, and the mobility μ0 in ‘conductive’
states is introduced as μ0 = (1/6)(e/kT )a2/τ0, where a is defined by (6). Obviously, θm(t)
decreases with time, while τ (t) increases.

In a typical TOF experiment the condition eF0 L � kT is fulfilled, and hence diffusion
could be neglected in comparison to drift. However, in a disordered system there is an
additional spreading of an initially narrow sheet of charge carriers that gives rise to the
diffusion-like term in (8). This kind of spreading was analysed analytically for quasi-
equilibrium conditions in [10, 12] and called field-assisted or field diffusion. It appears due
to (i) small deviations from equilibrium in the shallow trap population, caused by electric field,
and (ii) dispersion of release times of carriers [10–12]. The mean distance of drift in ‘conductive
states’, μ0 F0τ0, is a ‘mean free path’ in the coefficient DF, see (9b), and hence DF ∼ F2

0 .
Details of the thermalization of charge carriers and the way to derive equation (8) are given in
appendix B. One has to note that a low level of charge carrier generation is considered, and
hence filling of deep states is neglected here, as in GDM simulations [1].

Obviously, Ed(t) = Etrans at t = τ0 i.e. all traps are deep and occupation of all traps
is off-equilibrium. In the course of thermalization, the lower energetic boundary Ed(t) of
shallow states, that are in quasi-equilibrium, moves towards deeper states. Shortly after
charge carriers are generated, however, transport is exclusively dominated by deep traps,
i.e. it is entirely dispersive. The time duration of this period is defined by the condition
θ1(t)−1 dτ (t)/dt < 1 [9]. Under this condition one can neglect the term ∂p/∂ t ; in addition,
the field-diffusion term can be neglected in comparison with the right-hand side of (8). Since
equation (8) transforms to the ordinary dispersive transport equation [9, 13],

μ0τ (t)F0
∂p(x, t)

∂x
= −[p(x, t) − p(x, 0)]. (12)

In contrast, λ(t) → 0, μ(t) → μeq, Dt (t) → Deq in the limit of long time, and
hence equation (8) reduces to the usual Fokker–Planck equation, which describes quasi-
equilibrium transport with time-independent mobility μeq and field-dependent diffusion
coefficient DFeq [10, 12]. These constants are defined by (9a), (9b) and (10) with Ed(t) →
−∞. Thus, the system of equations (8)–(11) provides an analytic description of hopping
transport of carriers in the dispersive transport regime and also allows us to analyse subsequent
relaxation towards quasi-equilibrium. Coefficients and time dependences from (8) will be
analysed extensively in the following section.

2.2. Non-equilibrium hopping mobility and field diffusion coefficient

Using (1), (3) and (10) one obtains the following expressions for the functions that define the
time dependences of the mobility and field-assisted diffusion coefficient via (9a) and (9b),

θm(t)−1

(ν0τ0)m
= 1

2
exp

[
m

2

( σ

kT

)2 + m Etr

kT

]{

erfc

[
mσ√
2kT

+ Ed(t)√
2σ

]

− erfc

[
mσ√
2kT

+ Etrans√
2σ

]}

,

(13)
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where m = 1, 2, and erfc(x) = (2/
√

π)
∫ ∞

x dt exp(−t2) is the complementary error function.
Equations (3), (9) and (13) for the limit t → ∞ yield

μ(t) ≈ μeq = e

kT
χμ(Etrans)

ν0a2

6
exp

[

−1

2

( σ

kT

)2 − Etr

kT

]

, t � teq μ, (14)

DF(t) ≈ DFeq = χD(Etrans)(ν0a2)

(
eF0a

6kT

)2

exp

[
1

2

( σ

kT

)2 − Etr

kT

]

, t � teq D, (15)

where a is defined from (6), χμ(Etrans) = 2/erfc[−σ/
√

2kT − Etrans/
√

2σ ], χD(Etrans) =
χ3

μ erfc[−√
2σ/kT − Etrans/

√
2σ ]. Both factors χμ, χD are nearly 1 for the practically relevant

case σ/kT � 1. The equilibrium mobility μeq, see (14), is the same as in [6], since here Etr is
taken from [6], except for the numerical factor ≈1/6.

The factor exp[−Etr/kT ] in (14), (15) determines the dependence of μ and DF on the
density of the LS, N . For the limit of dilute systems, 2γ N−1/3kT/σ � 1, one obtains
Etr/kT ≈ 1.2(6γ 3/π N)1/3 = 2γ a. Thus, μeq ∼ exp(−C2γ N−1/3), and the value C = 0.745
is close to the well-known result of percolation theory [24], i.e. Cperc = 0.865.

One has to note that the field dependence of mobility has not been analysed in this paper
because it is restricted to the low-field limit, i.e. eF0a/kT < 1. Therefore the effect of field
strength on the mobility and on the field diffusion, see (9b), is of minor importance. On the
other hand, at room temperature and a ≈ 0.6 nm, one obtains F0 < 4 × 105 V cm−1, that is
strong enough to neglect conventional diffusion.

Analysing equation (13) yields the following relaxation times teq μ and teq D of mobility
and field diffusion, respectively:

ν0teq μ = exp[(σ/kT )2 + Etr/kT ], ν0teq D = exp[2(σ/kT )2 + Etr/kT ]. (16)

2.3. Transient current for the conditions of the time-of-flight experiment

The initial condition for conducting a TOF experiment is to generate a narrow sheet of carriers
at x = 0; hence p(x, 0) = A0δ(x) is proportional to the Dirac delta function, and A0 is the
area density of generated carriers. Fourier transformation with respect to the variable x yields
the following solution of equation (8) in the infinite sample:

p(x, t) = G(x, t, 0) +
∫ t

0
dt ′λ(t ′)G(x, t, t ′), (17a)

G(x, t, t ′) = A0 exp{−�(t, t ′) − [x − F0 M(t, t ′)]2/4SF(t, t ′)}/√4π SF(t, t ′) (17b)

where

SF(t, t ′) =
∫ t

t ′
dτ DF(τ ), �(t, t ′) =

∫ t

t ′
dτλ(τ ), M(t, t ′) =

∫ t

t ′
dτμ(τ).

Remember that conventional diffusion is neglected and hence charge carriers cannot
penetrate to the region x < 0. Disagreement of this statement with (17) is, however, not
principal. One should remember that the diffusion-like term in (8) is only an approximate way
to describe field-assisted dispersion of a carrier packet, and this approximation is not valid
in the short time domain. The condition of applicability of the field-diffusion approximation,
namely tθ2(t)/θ1(t) � 1 [10], is fulfilled, however, in all calculations that are performed in
this work. Namely, the integral

∫ ∞
0 dx p(x, t)/A0 was no less than 0.95 for the shortest times

involved in calculations. This means that dispersive drift contributes generally to the dispersion
of charge carriers, and the unphysical ‘tail’ of p(x, t) at x < 0 is unimportant, even at short

7
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Figure 2. Spatial profiles of the charge carrier density p(x, t) are calculated from equations (17)
for the times t = 0.5ttr and t = ttr (solid lines). The dashed lines show the respective Gaussians.
F0 = 2 × 105 V cm−1, σ/kT = 3.5, 2γ N−1/3 = 10, L = 5 μm.

times. Thus, equations (17) together with the following equation [9, 10]

j (t) = (e/L)∂/∂ t
∫ L

0
dx(x − L)p(x, t) (18)

solve the problem of calculating the transient current under TOF conditions. Neglecting field-
stimulated diffusion, the transit time of charge carriers can be determined from the following
equation [10]:

F0

∫ ttr

0
dt ′μ(t ′) exp[−�(ttr, t ′)] = L . (19)

One can simplify the highly complicated time dependence j (t) as defined by (17), (18) for
the relevant case of moderately non-equilibrium transport, t � teq μ, or tλ(t) < 1. Estimating
integrals in (17), (18) for this case yields p(x, t) ≈ G(x, t, 0) and

j (t) ≈ (1/2)(eA0F0/L)μ(t) exp[−tλ(t)]erfc[(F0 M(t, 0) − L)/2
√

SF(t, 0)]. (20)

3. Discussion

Spatial profiles of charge carrier density, as calculated from equations (17), are shown in
figure 2 for t = 0.5ttr and t = ttr (see solid lines) considering teq μ � ttr.

Dashed lines shows Gaussian profiles with widths that are identical to the front of p(x, t).
Obviously, the maximum of a carrier distribution is practically in the position x = L at t = ttr.
The front of the p(x, t) profile is practically Gaussian while the carrier density near x = 0
greatly exceeds the values that are expected from the Gaussian function. Consequently, the
mean position of carriers is slightly behind the maximum, see the arrows in the figure, while
both values increase practically linearly with time. A non-Gaussian tail of the distribution ap-
pears due to the capture of carriers on deep traps with release times greater than the transit time.

Figure 3 shows good quantitative agreement with the TOF signal as calculated from
the approximate equation (20) and from (17), (18), see dashed and solid lines, respectively,
and qualitative agreement both with experimental, see line with circles, and simulated

8
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Figure 3. Time dependence of the TOF current. Solid and dashed lines are the results of calculations
from equations (17), (18) and (20), respectively. Results of the TOF experiment (line with squares)
and Monte Carlo simulations of the GDM (crosses) are taken from figure 22 of [1]. Arrows indicate
the characteristic times; see text. T = 312 K, σ/kT = 3.5, N = 4.6×1021 cm−3, γ −1 = 0.12 nm.

results in GDM data, see full circles. Data for polycarbonate (PC), doped by 1,1-bis(di-4-
tolylaminophenyl) cyclohexane (TAPC), are taken from figure 22 of [1].

Although teq μ is much less than the transit time, see arrows on the figure, the current is
not strictly constant at any time, because of the moderate decrease of μ(t) and strong spatial
dispersion of carriers. The ‘plateau’ level j0 is defined operationally by the time of the minimal
tangent, and then characteristic values j1/2 = j0/2 = j (t1/2), t0 and t1/2 are defined by the
dot–dashed lines in figure 3. Obviously, the transit time ttr from (22) is good approximation to
the time t1/2.

Equation (16) predicts that in the course of field-assisted carrier diffusion, their relaxation
to quasi-equilibrium is not at all completed when the current reached its asymptotic value,
i.e. teq D � teq μ for σ/kT � 1. In figure 4, the time dependences eDF(t)μeqkT and
μ(t)/μeq, see (9a), (9b), (13), are plotted versus normalized time t/teq μ for several values
of the energetic disorder parameter σ/kT . It demonstrates enhanced field-assisted diffusion in
the time domain teq μ � t < teq D , if σ/kT � 2.5, although the mobility remains practically
constant. This explains why in TOF experiments the dispersion of the carrier arrival times,
W = (t1/2 − t0)/t1/2 [1, 21], exceeds the value predicted by conventional diffusion. Using
equation (20), one obtains

W ≈ L−1

[

π

∫ ttr

0
dt DF(t)

]1/2

. (21)

In the limit ttr > teq D , one can reduce (21) to the well-known form [1]

W ≈ √
π DF(ttr)/μeq F0 L, (22)

implying ttr ≈ L/μeq F0 and DF(t) ≈ DF(ttr). The ratio f ≈ eDF(ttr)/kT μeq, that can be
derived from the measured dispersion W differs considerably from that predicted under the
premise of the quasi-equilibrium limit f (t → ∞) = eDFeq/kTμeq, if ttr < teq D (figure 4).

Variation of DF(ttr) with the ttr parametric of σ/kT , F0 and L should cause substantial
deviations from the predictions of equations (9a), (9b), (14), (15), and (22), i.e. W ∼ F0.5

0 ,

9
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Figure 4. Time dependences of the field-assisted diffusion coefficient, normalized by the
equilibrium value of the coefficient of usual diffusion, Deq = μeqkT/e, parametric in σ/kT
values. Respective dependences μ(t)/μeq are also shown in the figure. Time is normalized by the
relaxation time of mobility teq μ, see equation (16). The arrows mark the relaxation times teq D .
Other parameters: F0 = 2 × 105 V cm−1, N = 4.6 × 1021 cm−3, γ −1 = 0.12 nm, T = 295 K.

W ∼ L−0.5, W ∼ exp[0.5(σ/kT )2], if the transit time is sufficiently large to achieve quasi-
equilibrium. This is in agreement with GDM simulations and TOF experiments [1, 19–22] for
large sample thickness or weak field. On the other hand, the W (L, F0) dependence becomes
weak as L and F−1

0 decreases [1, 21, 22]. In the sense of the current model, the power-like
increase of field diffusion coefficient in a long-time domain such as DF ∼ t0.6 for σ/kT = 4
(see figure 4) causes W ∼ (F0/L)0.2; see (21). In view of the statistical scatter of experimental
or GDM data, the latter is difficult to distinguish from W = const [20]. GDM simulations
on a sample with positional disorder and intermediate thickness yield power-law dependences
W ∼ L−n , 0 < n < 0.5 [21]. In figure 5, calculated W (L) dependences are compared with
experimental data at several values of σ/kT . Data on TAPC-doped polystyrene are taken from
the [22]. A W ∼ L−0.5 law is indicated by dashed straight lines. This is confirmed by the
W (L) dependence for σ/kT = 2.6. For σ/kT = 3.0 W (L) become weaker (L < 3 μm), and
for σ/kT = 4.4 the dispersion is practically independent of sample thickness. Values of W , as
calculated from (21) and (22), are in qualitative agreement with experimental data (see solid and
dash–dotted lines). The peculiarities of the W (L, F0, σ/kT ) dependences, mentioned above,
are a signature of transport being not completely in quasi-equilibrium although the mobility
has equilibrated already. The coefficient of field-assisted diffusion continues to increase during
several orders of magnitude in time even at moderate energy disorder, i.e. σ/kT = 3.0
(figure 4). This transport regime will therefore be referred to as quasi-dispersive.

Simulation data in [19] on a system with pure energy disorder and σ/kT = 3.0 delineated
the different timescales for relaxation of mobility and diffusivity. The time dependence of the
diffusivity is taken from figure 1 of [19] and compared with the function DF(t) in figure 6. The
latter is calculated from (9b), (13) and is normalized by the minimal value of GDM diffusivity.
The time is normalized by the typical hopping time t0 = (1/6) exp(2γ N−1/3) [1]. Both
dependences are in good agreement. They show a minimum at t ∼= teq μ. For the GDM
data, the latter is defined by the condition μ(teq μ)/μeq ≈ 2, in accordance with figure 4.

At shorter times the transport is dispersive. Values of teq μ and teq D , as defined from the
data of [19] and from (16), are shown by solid and dashed arrows, respectively. Meanwhile the

10
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Figure 5. Dependences of the relative dispersion of the transient current W on the sample thickness
L for several values of σ/kT (shown in the figure). Other parameters are: F0 = 2 × 105 V cm−1,
N = 4.6 × 1021 cm−3, γ −1 = 0.15 nm. Experimental data (circles) are from [22]. Solid and dash–
dotted lines are calculated from approximate equations (21) and (22), respectively. The dashed
lines are the dependences W ∼ L−1/2. Crosses are the results of straightforward determination of
W = (t1/2 − t0)/t1/2 from j (t) curves.

Figure 6. Comparison of time dependences DF(t) from this work (solid line) and from GDM
(points, see figure 1 of [19]), σ/kT = 3. Time is normalized to t0 = (1/6) exp(2γ N−1/3).
Relaxation times of μ and DF as defined from the GDM and this model are marked by solid and
dashed arrows, respectively. The inset shows the time evolution of the density of occupied states,
as calculated from equations (B.1) and (3). Ratios t/teq μ are shown in the figure, and respective
positions of the demarcation energy Ed(t) are shown by arrows. The steady-state distribution is
denoted by the dotted line.

former time is practically the same as the time when the averaged energy of localized carrier
approaches the equilibrium value σ 2/kT , i.e. the difference becomes less than kT , while both
the maximum of the distribution of occupied states (DOOS) and the demarcation energy Ed(t)
reach σ 2/kT (see the inset to figure 6). The time teq D is of the same order of magnitude

11
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Figure 7. TOF current in thin film, L = 100 nm. Other parameters are the same as for figure 3. The
solid line is the calculation based upon equations (17) and (18) while the dotted line is the same,
but field diffusion is neglected. The dashed line is calculated from the approximate equation (20).
Arrows indicate the characteristic times; see text.

as the time when the dispersion of energies approaches the equilibrium value σ [19]. Slow
relaxation of the latter reflects slow relaxation of carriers towards the very tail states; see details
in appendix B. This is shown in the inset to figure 6, where time evolution of spatially averaged
DOOS 〈ρ〉(t) is calculated from equations (B.1) and (3). The coefficient of field diffusion is
controlled by the entire DOOS because it determines the variance of dwell times for carriers.
On the other hand, shallow LSs contribute preferably to the current, and their equilibration
takes much less time.

Obviously, charge transport must become dispersive in thin samples when the transit time
is short enough [1, 18]. Figure 7 shows the calculated occurrence of dispersive transport in
a thin film, L = 100 nm. The other parameters are the same as for figure 3. Neglecting the
field diffusion, one obtains the break of TOF current at t = ttr (see dotted line). Obviously,
ttr � t (0)

tr , where t (0)
tr = L/μeq F is the time of flight of carriers calculated under the (violated)

assumption that the mobility has reached its quasi-equilibrium value already. Therefore the
apparent mobility, defined as μapp = L/F0ttr, increases considerably at low temperatures
or strong energy disorder upon decreasing the sample thickness. One should remember that
L � 100 nm are typical values for organic light-emitting diodes.

In single-layer diodes the transit time of charge carriers determines the characteristic
time of onset of electroluminescence, tEL [25]. It is obvious that the temperature and field
dependences of mobility as defined from tEL should differ from values derived from TOF
experiments at L � 1 μm if the dispersive character of transport is disregarded.

4. Concluding remarks

It has been shown that in energetically and spatially random hopping systems there is a time
domain in which the transport is neither fully dispersive nor quasi-equilibrated. It is referred
to as a quasi-dispersive regime. It is the time domain in which the charge carriers in the
top portion of the density of states distribution that contribute most to the current are already
equilibrated while the entire ensemble of photoexited carriers still relaxes towards the bottom
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states. Previous Monte Carlo simulations delineated that field-assisted diffusion increases in
the long-time domain although the carrier mobility has saturated already [19, 21]. The present
analytic theory is able to account for the quasi-dispersive features, i.e. scaling of normalized
transient currents with anomalously large tails at different values of sample thickness and
field strength as well as almost equilibrated transport borne out by the plateau in the j (t)
dependence. It also provides a quantitative explanation for the experimentally observed and
simulated spread of the transit times, quantified by the dispersion parameter W (L, σ/kT, F0)

as a function of sample thickness, energy disorder parameter and electric field strength [20, 21].
The theory applies to the case of moderate electric field, and the field dependence of mobility
is not considered here.
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Appendix A

Assuming strong positional disorder, i.e. a large variation of hopping distances r , the average
number of neighbours above the energy E of the initial state, whose hopping parameters are
not larger than u0, can be calculated as [6]

n↑(E, u0) = 4π N
∫ u0/2γ

0
dr r 2

∫ E+kT (u0−2γ r)

E
dE ′ g(E ′)Wnr (E ′, r), (A.1)

where Wnr (E ′, r ) is the probability of a carrier for not returning to the initial state after having
jumped to the state of energy E ′, E ′ > E . After an upwards jump over the distance r , a
carrier will, most probably, not return to the initial state if there is at least one additional
hopping neighbour, which is separated from the target site by a distance smaller than r , outside
the sphere of radius r centred at the initial state [6]. In accord with a Poisson distribution,
Wnr (E ′, r) = 1 − exp[−nb(E ′, r )], where nb(E ′, r) is the average number of neighbours,
specified above,

nb(E ′, u) = 4π

∫ r

0
dr ′r ′2

∫ π

arccos(r ′/2r)

dϑ sin ϑ

∫ E ′+2γ kT (r−r ′)

−∞
dE ′′g(E ′′), (A.2)

where ϑ is the angle between the directions of jumps to the initial state and to another neighbour
in the vicinity of the target site at distance r ′ [6]. Neighbours from which a carrier preferably
returns to the initial state are not included in the number n↑(E, u0) because these round trip
jumps do not contribute to transport.

Appendix B

By analogy with the MT model, one can use the following kinetic equation for the distribution
of occupied states (DOOS) ρ(x, t, E), E < Etrans, which is the product of a density of states
g(E) and occupation probability,

∂ρ(x, t, E)

∂ t
= g(E)pc(x, t)/τ0 − ρ(x, t, E)ω(E), (B.1)

where pc(x, t) is the density of carriers occupying ‘conductive states’ with energies E > Etrans.
Since these states carry most of the current, one can introduce the continuity equation as

∂p(x, t)

∂ t
+ μ0 F0

∂pc(x, t)

∂x
= 0. (B.2)
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Integration with respect to time yields p(x, t) − p(x, 0) + μ0 F0∂ p̃c(x, t)/∂x = 0, where
p̃c(x, t) = ∫ t

0 dt ′ pc(x, t ′). Since most of the carriers are localized on traps, if σ/kT � 1,

one can consider p(x, t) ≈ ∫ Etrans

−∞ dEρ(x, t, E). Considering shallow traps, one can obtain
from (B.1)

ρsh(x, t, E) ≈ ρ
(1)
sh (x, t, E) = g(E)pc(x, t)[τ0ω(E)]−1, Ed(t) < E < Etrans, (B.3)

as a first approximation, assuming ∂ρ(x, t)/∂ t ≈ 0 in (B.1). Obviously, ρ
(1)

sh (x, t, E) ∼
exp(−E/kT ), see equation (3), i.e. in this approximation it follows the Boltzmann function.
The second (release) term in the right-hand side of (B.1) could be neglected if deep traps are
considered. Integration of the DOOS with respect to energy yields [9]

pc(x, t) ≈ p(x, t)θ1(t) − λ(t) p̃c(x, t). (B.4)

The left-hand side is negligible under the condition θ1(t)−1 dτ (t)/dt < 1 [9], i.e. at short
times, implying that transport is entirely dispersive. Integrating (B.2) with respect to time
and combining the resulting equation with (B.4), one obtains equation (8), except for the field-
diffusion term. In order to obtain the latter, one should consider the second-order approximation
in (B.1), substituting the first-order result, see (B.3), into the time derivative in (B.1) [11].
As a result, the additional term [θ1(t)/θ2(t)]∂pc(x, t)/∂ t appears in the right-hand side of
equation (B.4) as a manifestation of small deviations from a Boltzmann distribution in the
population of shallow states. This term can be considered as a small perturbation under the
condition [9, 11]

tθ2(t)/θ1(t) � 1, (B.5)

that limits applicability of the field-diffusion approximation at short times. The first-order
equation (B.4) can be substituted into the time derivative ∂pc(x, t)/∂ t in an additional term,
because it is small. Inserting the modified right-hand side of equation (B.4) into (B.2),
combining the result with time-integrated equation (B.2) and neglecting numerous smaller
perturbations, including contributions from deep traps (that is possible under the conditions
d[θ1(t)/θ2(t)]/dt � 1, λ(t)θ1(t)/θ2(t) � 1, which are practically equivalent to (B.5),
implying the almost power-law-like time dependences θ1(t), θ2(t) and τ (t)), one obtains
equation (8), including the field-diffusing term.
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